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Abstract. In this paper, we study the existence of at least three distinct solutions for a
class of impulsive fractional boundary value problems with p-Laplacian with Dirichlet bound-
ary conditions. Our approach is based on recent variational methods for smooth functionals
defined on reflexive Banach spaces. One example is presented to demonstrate the application
of our main results.
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1. Introduction and Background
In this paper, we consider the following nonlinear impulsive fractional boundary value

problem with Dirichlet boundary condition
(P f,g

λ,µ)
Dα

−TΦp(
cDα

0+u(t)) + |u(t)|p−2u(t) = λf(t, u(t)) + µg(t, u(t)), t ̸= tj , t ∈ (0, T ),

∆(Dα−1
−T Φp(

cDα
0+u))(tj) = Ij(u(tj))

u(0) = u(T ) = 0

where α ∈ (1p , 1], p > 1, Φp(s) = |s|p−2s (s ̸= 0), Dα
−T represents the right Riemann–Liouville

fractional derivative of order α and cDα
0+ represents the left Caputo fractional derivative of

order α,
∆(Dα−1

−T Φp(
cDα

0+u))(tj) = Dα−1
−T Φp(

cDα
0+u)(t

+
j )−Dα−1

−T Φp(
cDα

0+u)(t
−
j ),

Dα−1
−T Φp(

cDα
0+u)(t

+
j ) = lim

t→t+j

Dα−1
−T Φp(

cDα
0+u)(t),

Dα−1
−T Φp(

cDα
0+u)(t

−
j ) = lim

t→t−j

Dα−1
−T Φp(

cDα
0+u)(t),

λ > 0, µ ≥ 0, f, g : [0, T ] × R → R are L1-Carathéodory functions, 0 = t0 < t1 < · · · < tn <
tn+1 = T and Ij : R → R, j = 1, . . . ,m are Lipschitz continuous functions with the Lipschitz
constants Lj > 0, i.e

|Ij(x2)− Ij(x1)| ≤ Lj |x2 − x1|
for every x1, x2 ∈ R and Ij(0) = 0.
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Fractional differential equations appear naturally in a number of fields such as physics,
polymer rheology, regular variation in thermodynamics, biophysics, blood flow phenomena,
aerodynamics, electro-dynamics of complex medium, viscoelasticity, Bode analysis of feedback
amplifiers, capacitor theory, electrical circuits, electro-analytical chemistry, biology, control
theory, fitting of experimental data, etc. [24, 27, 28]. Recently, fractional differential equations
have been of great interest due to the intensive development of the theory of fractional calculus
itself and its applications. For some recent works on fractional differential equations, see
[2, 6, 8, 14] and the references therein.

Nonlinear boundary value problems involving p-Laplacian operator ∆p occur in a variety of
physical phenomena, such as: non-Newtonian fluids, reaction-diffusion problems, petroleum
extraction, flow through porous media, etc. Thus, the study of such problems and their far
reaching generalizations have attracted several mathematicians in recent years, we refer the
reader to [10, 12, 15, 26, 29] and the references therein.

The theory of impulsive differential equations is emerging as an important area of inves-
tigation since it is a lot richer than the corresponding theory of non-impulsive differential
equations. Many evolutionary processes in nature are characterized by the fact that at cer-
tain moments in time an abrupt change of state is experienced. That is the reason for the
rapid development of the theory of impulsive differential equations, for instance, see the two
books [7].

For an introduction of the basic theory of impulsive differential equation, we refer the reader
to [25]. Among previous research, little is concerned with differential equations with fractional
order with impulses [23]. Ahmad and Sivasundaram [4, 5] gave some existence results for two
point boundary value problems involving nonlinear impulsive hybrid differential equations of
fractional order 1 < α ≤ 2. Ahmad and Nieto in [3] established sufficient conditions for the
existence of solutions of the anti periodic boundary value problem for impulsive differential
equations with the Caputo derivative of order q ∈ (1, 2].

The study of impulsive fractional boundary value problem has already been extended to
the case involving the p-Laplacian. For details, see [1, 17, 18, 30, 32] and the references
therein. For example Wang et al. in [30] based on a variant fountain theorem, the existence
of infinitely many nontrivial high or small energy solutions for the problem (P f,g

λ,µ). Zhao and
Tang in [32] by employing critical point theory and variational methods studied the existence
and multiplicity of solutions for the problem (P f,g

λ,µ). In [17] using variational methods several
sufficient conditions for the existence of at least one classical solution to impulsive fractional
differential equations with a p-Laplacian and Dirichlet boundary conditions were presented.
In we study the existence of multiple non-trivial classical solution to the problem In [1],
applying Ricceri’s variational principle, we ensured the existence of infinitely many solutions
for the problem (P f,g

λ,µ).
Corresponding to the functions f and g, we introduce the functions F : [0, T ]×R → R and

G : [0, T ]× R → R, respectively, as follow

F (t, ξ) =

∫ ξ

0
f(t, x)dx for all (t, ξ) ∈ [0, T ]× R

and

G(t, ξ) =

∫ ξ

0
g(t, x)dx for all (t, ξ) ∈ [0, T ]× R.



IMPULSIVE FRACTIONAL BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN 85

We present two consequences of Theorems 3.1 and 3.2, respectively, in the case p = 2. For
our convenience, set

Gθ :=

∫ T

0
max
|ξ|≤θ

G(t, ξ)dt for all θ > 0

and
Gσ := T inf

[0,T ]×[0,σ]
G(t, x) for all σ > 0.

If g is sign-changing, then clearly Gθ ≥ 0 and Gσ ≤ 0. Put

k̄ =
Tα− 1

2

Γ(α)(2α− 1)
1
2

.

Theorem 1.1. Assume that there exist positive constants θ and δ with θ < k̄σ such that

(A1)

∫ T

0
sup
|ξ|≤θ1

F (t, ξ)dt

θ21
<

1− LT k̄2

k̄2
(
1 + LT k̄2

)
∫ T

0
F (t, σ)dt

σ2
;

(A2) lim supx→+∞
maxt∈[0,T ] F (t, x)

|x|2
≤ 0.

Then, for every

λ ∈


1 + LT k̄2

2
σ2∫ T

0
F (t, σ)dt

,

1− LT k̄2

2k̄2
θ2∫ T

0
sup
|ξ|≤θ

F (t, ξ)dt


where

(1 + LT k̄2)σ2∫ T

0
F (t, σ)dt

<
1−LT k̄2

k̄2
θ2∫ T

0
sup
|ξ|≤θ

F (t, ξ)dt

and for every continuous function g : [0, T ]× R → R, satisfying the condition

lim sup
x→+∞

maxt∈[0,T ]G(t, x)

|x|2
< +∞,

and for every

µ ∈

[
0,min

{
min

{(1− LT k̄2)θ2 − 2λk̄2
∫ T

0
sup
|ξ|≤θ

F (t, ξ)dt

2k̄2Gθ
,

1 + LT k̄2

2
σ2 − λ

∫ T

0
F (t, σ)dt

Gσ

}
,

1

max

{
0,

2k̄2T

1− LT k̄2
lim sup
x→+∞

supt∈[0,T ]G(t, x)

|x|2

}}),
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the problem

(1.1)


Dα

−T (
cDα

0+u(t)) + |u(t)|2 = λf(t, u(t)) + µg(t, u(t)), t ̸= tj , t ∈ (0, T ),

∆(Dα−1
−T (cDα

0+u))(tj) = Ij(u(tj))
u(0) = u(T ) = 0

possesses at least three solutions in Eα,2
0 .

Theorem 1.2. Assume that there exist positive constants θ1, θ2 and σ with θ1 < k̄σ and
max

{
σ,
√

1+LT k̄2

1−LT k̄2
k̄σ
}
< θ2 such that

(B1) f(t, x) ≥ 0 for each (t, x) ∈ [0, T ]× [−θ2, θ2];
(B2)

max


∫ T

0
F (t, θ1)dt

θ21
,

2

∫ T

0
F (t, θ2)dt

θ22

 <
1− LT k̄2

k̄2
(
1 + LT k̄2

)
∫ T

0
F (t, σ)dt

σ2
.

Then, for every

λ ∈


3(1 + LT k̄2)

4
σ2∫ T

0
F (t, σ)dt

,min


1− LT k̄2

2k̄2
θ21∫ T

0
sup
|ξ|≤θ1

F (t, ξ)dt

,

1− LT k̄2

2k̄2
θ22

2

∫ T

0
sup
|ξ|≤θ2

F (t, ξ)dt




where
3(1 + LT k̄2)

2
σ2∫ T

0
F (t, σ)dt

< min


1− LT k̄2

k̄2
θ21∫ T

0
sup
|ξ|≤θ1

F (t, ξ)dt

,

1− LT k̄2

k̄2
θ22

2

∫ T

0
sup
|ξ|≤θ2

F (t, ξ)dt


and for every non-negative continuous function g : [0, T ]× R → R for each

µ ∈

(
0,

1

2k̄2
min

{(1− LT k̄2)θ21 − 2λk̄2
∫ T

0
sup
|ξ|≤θ1

F (t, ξ)dt

Gθ1
,

(1− LT k̄2)θ22 − 4λk̄2
∫ T

0
sup
|ξ|≤θ2

F (t, ξ)dt

2Gθ2

}]
,

the problem (1.1) possesses at least three non-negative solutions u1, u2 and u3 such that
ui(t) < θ2, ∀t ∈ [0, T ] (i = 1, 2, 3).

Motivated by the above facts, in the present paper, using three kinds of three critical
points theorems obtained in [9, 11] which we recall in the next section (Theorems 2.1 and
2.2), we establish the existence of at least three solutions for the problem (P f,g

λ,µ) in which two
parameters are involved. Precise estimates of these two parameters λ and µ will be given,
see Theorems 3.1- 3.2. We present Example 3.5 in which the hypotheses of Theorem 3.1 is
fulfilled. Theorems 3.6 and 3.7 are two consequence of Theorems 3.1 and 3.2, respectively.
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This work is organized as follows: in section 2 we present some preliminary results and in
the section 3 we state and prove the main result.

2. Preliminaries
Let X be a real Banach space, let Φ,Ψ : X → R be two functions of class C1 on X, and

let λ be a positive real parameter. In order to study the problem (P f,g
λ,µ), our main tools are

critical points theorems for functional of type Iλ = Φ−λΨ which insure the existence at least
three critical points for every λ belonging to well-defined open intervals.

Theorem 2.1. [11, Theorem 2.6] Let X be a reflexive real Banach space, Φ : X → R be
a coercive continuously Gâteaux differentiable and sequentially weakly lower semicontinuous
functional whose Gâteaux derivative admits a continuous inverse on X∗, Ψ : X → R be a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that
Φ(0) = Ψ(0) = 0.
Assume that there exist r > 0 and v ∈ X, with r < Φ(v) such that

(a1)
supΦ(u)≤r Ψ(u)

r
<

Ψ(v)

Φ(v)
;

(a2) for each λ ∈ Λr :=

]
Φ(v)

Ψ(v)
,

r

supΦ(u)≤r Ψ(u)

[
the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ− λΨ has at least three distinct critical points in X.

Theorem 2.2. [9, Corollary 3.1] Let X be a reflexive real Banach space, Φ : X → R be a
convex, coercive and continuously Gâteaux differentiable functional whose derivative admits
a continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux differentiable functional
whose derivative is compact, such that

1. infX Φ = Φ(0) = Ψ(0) = 0;
2. for each λ > 0 and for every u1, u2 ∈ X which are local minima for the functional

Φ− λΨ and such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, one has
inf

s∈[0,1]
Ψ(su1 + (1− s)u2) ≥ 0.

Assume that there are two positive constants r1, r2 and v ∈ X, with 2r1 < Φ(v) < r2
2 , such

that

(b1)
supu∈Φ−1(]−∞,r1[)Ψ(u)

r1
<

2

3

Ψ(v)

Φ(v)
;

(b2)
supu∈Φ−1(]−∞,r2[)Ψ(u)

r2
<

1

3

Ψ(v)

Φ(v)
.

Then, for each

λ ∈

]
3

2

Φ(v)

Ψ(v)
, min

{
r1

supu∈Φ−1(]−∞,r1[)Ψ(u)
,

r2
2

supu∈Φ−1(]−∞,r2[)Ψ(u)

}[
,

the functional Φ− λΨ has at least three distinct critical points which lie in Φ−1(]−∞, r2[).

Theorems 2.1 and 2.2 have been successfully used to ensure the existence of at least three
solutions for perturbed boundary value problems in the papers [10, 13, 16, 19, 20, 21]. In this
section, we will introduce several basic definitions, notations, lemmas, and propositions used
all over this paper.
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Let AC[a, b] be the space of absolutely continuous functions on [a, b].

Definition 2.3. [22] Let f be a function defined on [a, b] and 0 < α ≤ 1. The left and right
Riemann-Liouville fractional integrals of order α for the function f are defined by

D−α
a+

f(t) =
1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds, t ∈ [a, b],

D−α
b− f(t) =

1

Γ(α)

∫ b

t
(s− t)α−1f(s)ds, t ∈ [a, b]

provided the right-hand sides are pointwise defined on [a, b] where Γ(α) is the standard gamma
function given by

Γ(α) =

∫ +∞

0
zα−1e−zdz.

Definition 2.4. [22] Let f be a function defined on [a, b] and 0 < α ≤ 1. The left and right
Riemann-Liouville fractional integrals of order α for the function f are defined by

Dα
a+f(t) =

d

dt
Dα−1

a+
f(t) =

1

Γ(1− α)

d

dt

∫ t

a
(t− s)−αf(s)ds, t ∈ [a, b],

Dα
b−f(t) = − d

dt
Dα−1

b− f(t) = − 1

Γ(1− α)

d

dt

∫ b

t
(s− t)−αf(s)ds, t ∈ [a, b].

Definition 2.5. [22] Let f be a function defined on [a, b] and 0 < α ≤ 1. The left and right
Riemann-Liouville fractional integrals of order α for the function f are defined by

cDα
a+f(t) = Dα−1

a+
f(t) =

1

Γ(1− α)

∫ t

a
(t− s)−αf ′(s)ds, t ∈ [a, b],

cDα
b−f(t) = −Dα−1

b− f(t) = − 1

Γ(1− α)

∫ b

t
(s− t)−αf ′(s)ds, t ∈ [a, b].

In particular, when α = 1, we have cD1
a+f(t) = f ′(t) and cD1

b−f(t) = −f ′(t).

Proposition 2.6. [33]

(1) If u ∈ Lp([0, T ],R), v ∈ Lq([0, T ],R) and p ≥ 1, q ≥ 1, 1

p
+

1

q
≤ 1+ θ or p ̸= 1, q ̸= 1,

1

p
+

1

q
= 1 + θ, then we have∫ b

a
[D−θ

t u(t)]v(t)dt =

∫ b

a
[v(t)D−θ

b ]u(t)dt, θ > 0.

(2) If 0 < α ≤ 1, u ∈ AC[a, b], and v ∈ Lp[a, b] (1 ≤ p < ∞), then∫ b

a
u(t)(cDα

a+f(t))dt = Dα−1
b u(t)v(t) |t=b

t=a +

∫ b

a
Dα

b u(t)v(t)dt.

Let C∞
0 ([0, T ],RN ) be the set of all functions u ∈ C∞([0, T ],RN ) with u(a) = u(b) = 0 and

the norm
∥u∥∞ = max

t∈[a,b]
|u(t)|.
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Denote the norm of the space Lp([0, T ],RN ) for 1 ≤ p < ∞ by

∥u∥Lp =
( ∫ b

a
|u(s)|pds

) 1
p
.

The following lemma yields the boundedness of the Riemann-Liouville fractional integral
operators from the space Lp([a, b],RN ) to the space Lp([a, b],RN ) where 1 ≤ p < ∞.

Definition 2.7. Let 0 < α ≤ 1, 1 < p < ∞. The fractional derivative space Eα,p
0 is defined

by the closure C∞
0 ([0, T ],R), that is

Eα,p
0 = C∞

0 ([0, T ],R)
with respect to the weighted norm

(2.1) ∥u∥Eα,p
0

=
(∫ T

0
|cDα

0+u(t)|
pdt+

∫ T

0
|u(t)|pdt

) 1
p

for every u ∈ Eα,p
0 .

Remark 2.8. It is obvious that the fractional derivative space Eα,p
0 is the space of func-

tions u ∈ L2([0, T ],R) having an α-order Riemann-Loiuville fractional derivative cDα
t u ∈

L2([0, T ],R) and u(0) = u(T ) = 0. From [22, Propostion 3.1], we know for 0 < α ≤ 1, the
space Eα,p

0 is a reflexive and separable Banach space.

Lemma 2.9. [33] Let 0 < α ≤ 1 and 1 < p < ∞. For any u ∈ Eα,p
0 , we have

∥u∥Lp ≤ Tα

Γ(α+ 1)
∥cDα

0+u(t)∥Lp .(2.2)

In addition, for 1

p
< α ≤ 1 and 1

p
+

1

q
= 1, we have

∥u∥∞ ≤ k∥cDα
0+u(t)∥Lp(2.3)

where k =
Tα− 1

2

Γ(α)(αq − q + 1)
1
q

.

Remark 2.10. According to Lemma 2.9, it is easy to see that the norm of Eα,p
0 defined in

(2.1) is equivalent to the following norm:

(2.4) ∥u∥α,p =
(∫ T

0
|cDα

0+u(t)|
pdt
) 1

p
.

Lemma 2.11. Let 1

p
< α ≤ 1. If the sequence {uk} converges weakly to u in Eα,p

0 , i.e.,
uk ⇀ u, then uk −→ u in C[0, T ], i.e., ∥u− uk∥∞ −→ 0 as k −→ ∞.

Lemma 2.12. A function

u ∈

{
u ∈ AC[0, T ] :

(∫ tj+1

tj

|(cDα
0+u(t)|

p + |u(t)|p)dt

)
< ∞, j = 1, 2, . . . ,m

}
is called a classical solution of BVP (P f,g

λ,µ) if
(1) u satisfies (P f,g

λ,µ).
(2) The limits Dα−1

T− Φp(
cDα

0+u)(t
+
j ), D

α−1
T− Φp(

cDα
0+u)(t

−
j ) exist.
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Definition 2.13. We mean by a (weak) solution of the BVP (P f,g
λ,µ), any function u ∈ Eα,p

0

such that ∫ T

0
|cDα

0+u(t)|
p−2(cDα

0+u(t))(
cDα

0+v(t))dt+

∫ T

0
|u(t)|p−2u(t)v(t)dt

+
m∑
j=1

Ij(u(tj))v(tj)− λ

∫ T

0
f(t, u(t))v(t)dt− µ

∫ T

0
g(t, u(t))v(t)dt = 0

for every v ∈ Eα,p
0 .

Lemma 2.14. [32] If u ∈ Eα,p
0 is a weak solution of BVP (P f,g

λ,µ), then u is a classical solution
of BVP (P f,g

λ,µ)

We assume throughout and without further mention, that 1 > LTkp where L =
∑m

j=1 Lj .
We need the following proposition for existence our main results.

Proposition 2.15. Let S : Eα −→ (Eα)∗ be the operator defined by

S(u)(v) =

∫ T

0
|cDα

0+u(t)|
p−2(cDα

0+u(t))(
cDα

0+v(t))dt

+

∫ T

0
|u(t)|p−2u(t)v(t)dt+

m∑
j=1

Ij(u(tj))v(tj)

for every u, v ∈ Eα. Then, S admits a continuous inverse on (Eα)∗.
Proof. It is obvious that

S(u)(u) =

∫ T

0
|cDα

0+u(t)|
pdt+

∫ T

0
|u(t)|pdt+

m∑
j=1

Ij(u(tj))u(tj)

≥(1− LTkp)∥u∥pα,p.
This follows that S is coercive. Owing to our assumptions on the data, one has

⟨S(u)− S(v), u− v⟩ =
∫ T

0
|cDα

0+(u(t)− v(t))|pdt+
∫ T

0
|(u(t)− v(t))|pdt

+
m∑
j=1

Ij((u(tj)− v(tj))(u(tj)− v(tj))

≥ (1− LTkp)∥u− v∥pα,p > 0

for every u, v ∈ Eα, which means that S is strictly monotone. Moreover, since Eα is reflexive,
for un −→ u strongly in Eα as n → +∞, one has S(un) → S(u) weakly in (Eα)∗ as n → ∞.
Hence, S is demicontinuous, so by [31, Theorem 26.A(d)], the inverse operator S−1 of S exists
and it is continuous. Indeed, let en be a sequence of (Eα)∗ such that en → e strongly in (Eα)∗

as n → ∞. Let un and u in Eα such that S−1(en) = un and S−1(e) = u. Taking into account
that S is coercive, one has that the sequence un is bounded in the reflexive space Eα. For a
suitable subsequence, we have un → û weakly in Eα as n → ∞, which concludes

⟨S(un)− S(u), un − û⟩ = ⟨en − e, un − û⟩ = 0.

Note that if un → û weakly in Eα as n → +∞ and S(un) → S(û) strongly in (Eα)∗ as
n → +∞, one has un → û strongly in Eα as n → +∞, and since S is continuous, we have
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un → û weakly in Eα as n → +∞ and S(un) → S(û) = S(u) strongly in (Eα)∗ as n → +∞.
Hence, taking into account that S is an injection, we have u = û. □

3. Main result
Fixing positive constants θ and σ, put

(1 + LTkp)σp∫ T

0
F (t, σ)dt

<

1− LTkp

kp
θp∫ T

0
sup
|ξ|≤θ

F (t, ξ)dt

and taking

λ ∈ Λ :=


1 + LTkp

p
σp∫ T

0
F (t, σ)dt

,

1− LTkp

pkp
θp∫ T

0
sup
|ξ|≤θ

F (t, ξ)dt


set δλ,g given by

δλ,g := min


(1− LTkp)θp − λpkp

∫ T

0
sup
|ξ|≤θ

F (t, ξ)dt

pkpGθ
,

1 + LTkp

p
σp − λ

∫ T

0
F (t, σ)dt

Gσ


and

(3.1) δλ,g := min

δλ,g,
1

max

{
0,

pkpT

1− LTkp
lim sup
x→+∞

supt∈[0,T ]G(t, x)

|x|p

}


where we read ϵ/0 = +∞, so that, for instance, δλ,g = +∞ when

lim sup
x→+∞

sup|t|∈[0,T ]G(t, x)

xp
≤ 0,

and Gσ = Gθ = 0. We formulate our main result as follows.

Theorem 3.1. Assume that there exist positive constants θ and δ with θ < kσ such that

(A1)

∫ T

0
sup
|ξ|≤θ1

F (t, ξ)dt

θp1
<

1− LTkp

kp (1 + LTkp)

∫ T

0
F (t, σ)dt

σp
;

(A2) lim supx→+∞
maxt∈[0,T ] F (t, x)

|x|p
≤ 0.

Then, for every λ ∈ Λ and for every continuous function g : [0, T ] × R → R, satisfying the
condition

lim sup
|x|→+∞

maxt∈[0,T ]G(t, x)

xp
< +∞,
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there exists δλ,g > 0 given by (3.1) such that, for each µ ∈ [0, δλ,g), the problem (P f,g
λ,µ)

possesses at least three solutions in Eα,p
0 .

Proof. Our aim is to apply Theorem 2.1 to the problem (P f,g
λ,µ). Take X = Eα,p

0 . Let the
functionals Φ,Ψ for every u ∈ X, defined by

Φ(u) =
1

p
∥u∥pα,p −

m∑
j=1

∫ u(tj)

0
Ij(s)ds(3.2)

and
Ψ(u) =

∫ T

0
F (t, u(t))dt+

µ

λ

∫ T

0
G(t, u(t))dt.

Let us prove that the functionals Φ and Ψ satisfy the required conditions in Theorem 2.1. It
is well known that Ψ is a differentiable functional whose differential at the point u ∈ X is

Ψ′(u)(v) =

∫ T

0
f(t, u(t))v(t)dt+

µ

λ

∫ T

0
g(t, u(t))v(t)dt

for every v ∈ X, as well as is sequentially weakly upper semicontinuous. Now from the facts
−Lj |ξ| ≤ Ij(ξ) ≤ Lj |ξ| for every ξ ∈ R, j = 1, . . . ,m, and taking (2.3) into account, for every
u ∈ X, we have

1− LTkp

p
∥u∥pα,p ≤

1

p
∥u∥pα,p −

LTkp

p
∥u∥pα,p ≤ Φ(u)

≤ 1

p
∥u∥pα,p +

LTkp

p
∥u∥pα,p ≤

1 + LTkp

p
∥u∥pα,p,(3.3)

by using the condition 1 > LTkp, and the first inequality in (3.3), it follows lim∥u∥→+∞Φ(u) =
+∞, namely Φ is coercive. Moreover, Φ is continuously differentiable whose differential at
the point u ∈ X is

Φ′(u)(v) =

∫ T

0
|cDα

0+u(t)|
p−2(cDα

0+u(t))(
cDα

0+v(t))dt

+

∫ T

0
|u(t)|p−2u(t)v(t)dt+

m∑
j=1

Ij(u(tj))v(tj)

for every v ∈ X. Furthermore, Proposition 2.15 gives that Φ′ admits a continuous inverse
on X∗. Moreover, Φ is sequentially weakly lower semicontinuous. Therefore, we observe that
the regularity assumptions on Φ and Ψ, as requested in Theorem 2.1, are verified. Define w
by setting

w(t) =

 0, if t = 0,
σ, if t ∈ (0, T ),
0, if t = 0.

Clearly, w ∈ X, from (3.2) and (3.3), we have
1− LTkp

p
σp ≤ Φ(w) ≤ 1 + LTkp

p
σp.

Choose
r =

1− LTkp

pkp
θp.
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From the condition θ < kσ, we achieve r < Φ(w). From the definition of Φ, the estimate
Φ(u) < r implies that

Φ−1(−∞, r] = {u ∈ X; Φ(u) ≤ r} ⊆ {u ∈ X; |u| ≤ θ} .(3.4)

and it concludes that

sup
u∈Φ−1(−∞,r]

Ψ(u) = sup
u∈Φ−1(−∞,r]

∫ T

0

[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt

≤
∫ T

0
sup
|ξ|≤θ

F (t, ξ)dt+
µ

λ
Gθ.

On the other hand, we have

Ψ(w) =

∫ T

0

[
F (t, w(t)) +

µ

λ
G(t, w(t))

]
dt ≥

∫ T

0
F (t, σ)dt+

µ

λ
Gσ.

Therefore, we have

supu∈Φ−1(−∞,r]Ψ(u)

r
=

supu∈Φ−1(−∞,r)

∫ T

0
F (t, u(t))dt

r

≤

∫ T

0
sup
|ξ|≤θ

F (t, ξ)dt

1− LTkp

pkp
θp

(3.5)

and

Ψ(w)

Φ(w)
=

∫ T

0
F (t, σ)dt+

µ

λ
Gσ

Φ(w)
≥

∫ T

0
F (t, σ)dt+

µ

λ
Gσ

1 + LTkp

p
σp

.(3.6)

Since µ < δλ,g, one has

µ <

(1− LTkp)θp − λpkp
∫ T

0
sup
|ξ|≤θ

F (t, ξ)dt

pkpGθ
,

this means ∫ T

0
sup
|ξ|≤θ

F (t, ξ)dt+
µ

λ
Gθ

1− LTkp

pkp
θp

<
1

λ
.

Furthermore,

µ <

1 + LTkp

p
σp − λ

∫ T

0
F (t, σ)dt

Gσ
,
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this means ∫ T

0
F (t, σ)dt+

µ

λ
Gσ

1 + LTkp

p
σp

>
1

λ
.

Then, ∫ T

0
sup
|ξ|≤θ

F (t, ξ)dt+
µ

λ
Gθ

1− LTkp

pkp
θp

<
1

λ
<

∫ T

0
F (t, σ)dt+

µ

λ
Gσ

1 + LTkp

p
σp

.(3.7)

Hence, from (3.5)-(3.7), the condition (a1) of Theorem 2.1 is fulfilled. To this end, since
µ < δλ,g, we can fix l > 0 such that

lim sup
t→+∞

maxt∈[0,T ]G(t, x)

|x|p
< l,

and µl <
1− LTkp

pkpT
. Therefore, there exists a function h ∈ L1[0, T ] such that

G(t, x) ≤ l|x|p + h(t)

for every (t, x) ∈ [0, T ]× R. Fix

0 < ϵ <
1− LTkp

λTkpp
− µl

λ
,

from (A2) there is a function hϵ ∈ L1[0, T ] such that

F (t, x) < ϵ|x|p + hϵ(t) for all (t, x) ∈ [0, T ]× R.

Taking (2.3) into account, it follows that, for each u ∈ X,

Φ(u)− λΨ(u) ≥ 1− LTkp

p
∥u∥pα,p − λ

∫ T

0
[F (t, u(t)) +G(t, u(t))] dt

≥ 1− LTkp

p
∥u∥pα,p − λϵ

∫ T

0
up(t)dt− λ∥hϵ∥1

− µl

∫ T

0
up(t)dt− µ∥h∥1

≥ 1− LTkp

p
∥u∥pα,p − λϵT∥u∥p∞

− λ∥hϵ∥1 − µlT∥u∥p∞ − µ∥h∥1

=

(
1− LTkp

p
− λϵTkp − µlTkp

)
∥u∥pα,p − λ∥hϵ∥1 − µ∥h∥1

and thus
lim

∥u∥→+∞
(Φ(u)− λΨ(u)) = +∞.
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Therefore, (a1) and (a2) of Theorem 2.1 are fulfilled. By using relations (3.5) and (3.7) one
also has

λ ∈

]
Φ(w)

Ψ(w)
,

r

supΦ(u)≤r Ψ(u)

[
.

Finally, Theorem 2.1 assures the existence of three critical points for the functional Φ − λΨ

(with v = w), which are solutions of the problem (P f,g
λ,µ) and we have the conclusion. □

Now, we present a variant of Theorem 3.1 in which no asymptotic condition on the nonlinear
term is requested.

For our goal, let us fix positive constants θ1, θ2 and σ, such that

3(1 + LTkp)

2
σp∫ T

0
F (t, σ)dt

< min


1− LTkp

kp
θp1∫ T

0
sup
|ξ|≤θ1

F (t, ξ)dt

,

1− LTkp

kp
θp2

2

∫ T

0
sup
|ξ|≤θ2

F (t, ξ)dt


and take

Λ′ :=


3(1 + LTkp)

2p
σp∫ T

0
F (t, σ)dt

,min


1− LTkp

pkp
θp1∫ T

0
sup
|ξ|≤θ1

F (t, ξ)dt

,

1− LTkp

pkp
θp2

2

∫ T

0
sup
|ξ|≤θ2

F (t, ξ)dt




and

δ′λ,g :=
1

pkp
min

{(1− LTkp)θp1 − λpkp
∫ T

0
sup
|ξ|≤θ1

F (t, ξ)dt

Gθ1
,(3.8)

(1− LTkp)θp2 − 2λpkp
∫ T

0
sup
|ξ|≤θ2

F (t, ξ)dt

2Gθ2

}
.

Theorem 3.2. Assume that there exist positive constants θ1, θ2 and σ with θ1 < kσ and

max

{
σ, p

√
1 + LTkp

1− LTkp
kσ

}
< θ2 such that

(B1) f(t, x) ≥ 0 for each (t, x) ∈ [0, T ]× [−θ2, θ2];
(B2)

max


∫ T

0
F (t, θ1)dt

θp1
,

2

∫ T

0
F (t, θ2)dt

θp2

 <
1− LTkp

kp (1 + LTkp)

∫ T

0
F (t, σ)dt

σp
.

Then, for every λ ∈ Λ′ and for every non-negative continuous function g : [0, T ] × R → R,
there exists δ′λ,g > 0 given by (3.8) such that, for each µ ∈ [0, δ′λ,g), the problem (P f,g

λ,µ) possesses
at least three non-negative solutions u1, u2 and u3 such that

ui(t) < θ2, ∀t ∈ [0, T ] (i = 1, 2, 3).
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Proof. We consider the auxiliary problem
(P f̂ ,g

λ,µ) Dα
−TΦp(

cDα
0+u(t)) + |u(t)|p−2u(t) = λf̂(t, u(t)) + µg(t, u(t)), t ̸= tj , t ∈ (0, T ),

∆(Dα−1
−T Φp(

cDα
0+u))(tj) = Ij(u(tj))

u(0) = u(T ) = 0

where f̂ : [0, T ]× R → R is an L1-Carathéodory function defined by

f̂(t, ξ) =

 f(t, 0), if ξ < −θ2,
f(t, ξ), if − θ2 ≤ ξ ≤ θ2,
f(t, θ2), if ξ > θ3.

If a solution of the problem (P f̂ ,g
λ,µ) satisfies the condition −θ2 ≤ u(t) ≤ θ2 for every t ∈ [0, T ],

then, clearly it turns to be also a solution of (P f,g
λ,µ). Therefore, for our goal, it is enough to

show that our conclusion holds for (P f,g
λ,µ). Fix λ, g and µ as in the conclusion and take Φ

and Ψ as in the proof of Theorem 3.1. We observe that the regularity the assumptions of
Theorem 2.2 on Φ and Ψ are fulfilled. Then, our aim is to verify (b1) and (b2). To this end,
choose w as given in (3), as well as

r1 =
1− LTkp

pkp
θp1 and r2 =

1− LTkp

pkp
θp2.

In view of the conditions θ1 <
kσ
p
√
2

and p

√
2(1 + LTkp)

1− LTkp
kσ < θ2, we have 2r1 < Φ(w) <

r2
2

.

Since µ < δ′λ,g and Gσ = 0, one has

supu∈Φ−1(−∞,r1)Ψ(u)

r1
=

supu∈Φ−1(−∞,r1)

∫ T

0

[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt

r1

≤

∫ T

0
max
|x|≤θ1

F (t, x)dt+
µ

λ
Gθ1

1− LTkp

pkp
θp1

<
1

λ

<
2

3

∫ T

0
F (t, σ)dt+

µ

λ
Gσ

1 + LTkp

p
σp

≤2

3

Ψ(w)

Φ(w)
(3.9)
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and

2
supu∈Φ−1(−∞,r2)Ψ(u)

r2
=2

supu∈Φ−1(−∞,r2)

∫ T

0

[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt

r2

≤2

∫ T

0
max
|x|≤θ2

F (t, x)dt+
µ

λ
Gθ2

1− LTkp

pkp
θp2

<
1

λ

<
2

3

∫ T

0
F (t, σ)dt+

µ

λ
Gσ

1 + LTkp

p
σp

≤2

3

Ψ(w)

Φ(w)
.

Finally, we verify that Φ−λΨ satisfies the second assumption of Theorem 2.2. Let u1 and u2
be two local minima for Φ−λΨ. Then u1 and u2 are critical points for Φ−λΨ, and so, they are
solutions for the problem (P f,g

λ,µ). Since f and g are non-negative then the solutions ensured
are non-negative. Indeed, let u∗ be a non-trivial solution of the problem (P f,g

λ,µ), then u∗ is
non-negative. Arguing by a contradiction, assume that the set A = {t ∈]0, T ]; u∗(t) < 0}.
Put v̄(t) = min{u∗(t), 0} for t ∈ [0, T ]. Clearly, v̄ ∈ Eα,p

0 and one has∫ T

0
|cDα

0+u∗(t)|
p−2(cDα

0+u∗(t))(
cDα

0+ v̄(t))dt+

∫ T

0
|u∗(t)|p−2u∗(t)v̄(t)dt

+

m∑
j=1

Ij(u∗(tj))v̄(tj)− λ

∫ T

0
f(t, u∗(t))v̄(t)dt− µ

∫ T

0
g(t, u∗(t))v̄(t)dt = 0

and by choosing v̄ = u∗ and since f and g are non-negative, we have

0 ≤ 2C1∥u∗∥pEα,p
0 (A)

≤
∫ T

0
|cDα

0+u∗(t)|
p +

∫ T

0
|u∗(t)|p +

m∑
j=1

Ij(u∗(tj))u∗(tj)

=λ

∫
Eα,p
0 (A)

f(t, u∗(t))u∗(t)dt+ µ

∫
Eα,p
0 (A)

g(t, u∗(t))u∗(t)dt ≤ 0.

Hence, since LTkp < 1,

∥u∗∥pEα,p
0 (A)

≤ 0

which contradicts with this fact that u∗ is a non-trivial solution. Hence, u∗ is positive. Then,
we observe u1(t) ≥ 0 and u2(t) ≥ 0 for every t ∈ [0, T ]. Thus, it follows that su1 + (1 −
s)u2 ≥ 0 for all s ∈ [0, 1], and that (λf + µg)(k, su1 + (1 − s)u2) ≥ 0, and consequently,
Ψ(su1 + (1− s)u2) ≥ 0, for every s ∈ [0, 1]. From Theorem 2.2, for every

λ ∈

3
2

Φ(w)

Ψ(w)
, min

 r1
sup

u∈Φ−1(−∞,r1)

Ψ(u)
,

r2/2

sup
u∈Φ−1(−∞,r2)

Ψ(u)


 ,
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the functional Φ − λΨ has at least three distinct critical points, which are solutions of the
problem (P f,g

λ,µ) and the conclusion is achieved. □

Remark 3.3. If in Theorems 3.1 and 3.2, either f(t, 0) ̸= 0 for some t ∈ [0, T ] or g(t, 0) ̸= 0
for some t ∈ [0, T ], or both hold true, then the ensured solutions are obviously non-trivial.

Remark 3.4. If we consider the case in which the function f has separated variables of the
problem (P f,g

λ,µ),
(P f,g

λ,µ)
Dα

−TΦp(
cDα

0+u(t)) + |u(t)|p−2u(t) = λf1(t)f2(u(t)) + µg(t, u(t)), t ̸= tj , t ∈ (0, T ),

∆(Dα−1
−T Φp(

cDα
0+u))(tj) = Ij(u(tj))

u(0) = u(T ) = 0

where f1 ∈ C([1, T ]) and f2 ∈ C(R) are two non-negative functions, putting F̃ (t) =

∫ t

0
f2(ξ)dξ

for all t ∈ R, in Theorem 3.1 the assumptions (A1) and (A2) can be written as

(A3)
F̃ (θ)

θp1
<

1− LTkp

kp (1 + LTkp)

F̃ (σ)

σp
;

(A4) lim supx→+∞
F̃ (x)
|x|p ≤ 0.

respectively, as well as

λ ∈ Λ :=


1 + LTkp

p
σp

F̃ (σ)

∫ t

0
f(t)dt

,

1− LTkp

pkp
θp

F̃ (θ)

∫ t

0
f(t)dt


and

δλ,g := min


(1− LTkp)θp − λpkpF̃ (θ)

∫ t

0
f(t)dt

pkpGθ
,

1 + LTkp

p
σp − λF̃ (σ)

∫ t

0
f(t)dt

Gσ

 .

In this case, in Theorem 3.2 the assumption (B2) assumes the form
(B3)

max

{
F̃ (θ1)

θp1
,
2F̃ (θ2)

θp2

}
<

α−p

3T ppα+

F̃ (σ)

σp

as well as

Λ′ :=


3(1 + LTkp)

2p
σp

F̃ (σ)

∫ t

0
f(t)dt

,min


1− LTkp

pkp
θp1

F̃ (θ1)

∫ t

0
f(t)dt

,

1− LTkp

pkp
θp2

2F̃ (θ2)

∫ t

0
f(t)dt



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δ′λ,g :=
1

pkp
min

{(1− LTkp)θp1 − λpkpF̃ (θ1)

∫ t

0
f(t)dt

Gθ1
,

(1− LTkp)θp2 − 2λpkpF̃ (θ2)

∫ t

0
f(t)dt

2Gθ2

}
.

We now present the following example to illustrate Theorem 3.1.

Example 3.5. We consider the following problem

(3.10)


Dα

−1Φ3(
cDα

0+u(t)) + |u(t)|u(t) = λf(u(t)) + µg(u(t)), t ̸= 1
2 , t ∈ (0, 1),

∆(Dα−1
−1 Φ3(

cDα
0+u))(

1
2) = I1(u(

1
2))

u(0) = u(1) = 0

where α =
5

6
, I1(ζ) =

Γ3(56)

2
(
3

4
)2 sin(ζ) for every ζ ∈ R and

f(t) =

 7t6, if t < 1,
7, if t = 1,
7
t , if t > 1.

By the expression of f , we have

F (t) =

 t7, if t < 1,
7t− 6, if t = 1,
1 + 7 ln(t), if t > 1.

Direct calculations give k =
1

Γ(56)(
3
4)

2
3

. Taking θ =
1

10
and σ = 1, we clearly see that all

assumptions of Theorem 3.1 are satisfied. Then, for every

λ ∈

(
1

2
,
3× 104 × Γ3(56)

32

)
and for every non-negative continuous function g : R → R, there exists δ̄λ,g > 0 such that, for
each µ ∈ [0, δ̄λ,g), the problem (3.10) possesses at least three solutions u1, u2 and u3.

We present a special case of Theorem 3.1 as follows.

Theorem 3.6. Let f : R → R be a continuous function. Put F (x) :=

∫ x

0
f(ξ)dξ for all x ∈

R. Assume that
lim inf
x→0

F (x)

xp
= lim sup

x→+∞

F (x)

xp
= 0.

Then, there is λ∗ > 0 such that for each λ > λ∗ and for every continuous function g : R → R
satisfying the condition

lim sup
x→+∞

∫ x

0
g(s)ds

|x|p
< +∞,
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there exists δ > 0 such that, for each µ ∈ [0, δ), the problem
Dα

−TΦp(
cDα

0+u(t)) + |u(t)|p−2u(t) = λf(u(t)) + µg(u(t)), t ̸= tj , t ∈ (0, T ),

∆(Dα−1
−T Φp(

cDα
0+u))(tj) = Ij(u(tj))

u(0) = u(T ) = 0

admits at least three distinct solutions.

Proof. Fix λ > λ∗ :=

1 + LTkp

p
σp

TF (σ)
for some σ > 0. From the condition

lim inf
ξ→0

F (ξ)

ξp
= 0,

there is a sequence {θn} ⊂]0,+∞[ such that lim
n→+∞

θn = 0 and

lim
n→+∞

sup
|ξ|≤θn

F (ξ)

θpn
= 0.

Indeed, one has

lim
n→∞

sup
|ξ|≤θn

F (ξ)

θpn
= lim

n→∞

F (ξθn)

ξpθn

ξpθn
θpn

= 0

where F (ξθn) = sup
|ξ|≤θn

F (ξ). Hence, there exists θ > 0 such that

sup
|ξ|≤θ

F (ξ)

θ
p < min

{
1− LTkp

kp (1 + LTkp)

F (σ)

σp
,
1− LTkp

λTkpp

}
and

θ <
p
√
2kσ.

Applying Theorem 3.1 we have the conclusion. □

We end this paper by giving the following result a simple consequence of Theorem 3.2.

Theorem 3.7. Let f : R → R be a non-negative continuous function such that

lim
x→0+

f(x)

x3
= 0

and ∫ 10

0
f(ξ)dξ <

16× 104Γ4(34)

35

∫ 1

0
f(ξ)dξ.

Then, for every λ ∈

 9

16

∫ 1

0
f(ξ)dξ

,
104Γ4(34)

27

∫ 10

0
f(ξ)dξ

 and for every non-negative continuous

function g : [0, 1]× R → R satisfying the condition

lim sup
x→+∞

max|t|∈[0,1] g(t, x)

x4
< +∞,



IMPULSIVE FRACTIONAL BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN 101

there exists δ > 0 such that, for each µ ∈ [0, δ[, the problem
D

3
4
−1Φ4(

cD
3
4

0+
u(t)) + |u(t)|2u(t) = λf(u(t)) + µg(u(t)), t ̸= tj , t ∈ (0, 1),

∆(D
− 1

4
−1 Φ4(

cD
3
4

0+
u))(tj) = Ij(u(tj))

u(0) = u(1) = 0

admits at least three distinct non-negative solutions.

Proof. Our aim is to employ Theorem 3.2 by choosing α =
3

4
, T = 1, p = 4, I(ξ) =

Γ4(
3

4
)

2
(
2

3
)3 sin(ξ) for all ξ ∈ R, σ = 1 and θ2 = 10. Therefore, since k =

1

Γ(34)(
2
3)

3
4

, we see

that
3(1 + LTkp)

2p
σp∫ T

0
F (t, σ)dt

=
9

16

∫ 1

0
f(ξ)dξ

and
1− LTkp

pkp
θp2

2

∫ T

0
sup
|ξ|≤θ2

F (t, ξ)dt

=
104Γ4(34)

27

∫ 10

0
f(ξ)dξ

.

Moreover, since lim
t→0+

f(x)

x3
= 0, one has

lim
x→0+

∫ x

0
f(ξ)dξ

x4
= 0.

Then, there exists a positive constant θ1 <
1

Γ(34)(
2
3)

3
4

such that

∫ θ1

0
f(ξ)dξ

θ41
<

8Γ4(34)

∫ 1

0
f(ξ)dξ

34

and
θ41∫ θ1

0
f(ξ)dξ

>
2× 104

3

∫ 10

0
f(ξ)dξ

.

Finally, we easily observe that all assumptions of Theorem 3.2 are satisfied, and it follows the
result. □

3.1. References.
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